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Abstract
We calculate the tunneling density of states for a two-dimensional interacting electron gas in a
quantizing magnetic field. We show that the observed pseudogap in the density of states of the
lowest Landau level can be regarded to be a consequence of an infrared catastrophe, resulting
from the response of the electron system to the potential produced by the abruptly added charge
during a tunneling event. Our formalism can be applied at any filling factor without the use of
Chern–Simons or composite fermion theory.

1. Introduction

Systems where interactions dominate are intrinsically interest-
ing, but are also difficult to treat theoretically. A classic ex-
ample of this is the quantum Hall system, where the dynam-
ics are almost if not entirely driven by interactions and where
specialized nonperturbative theoretical techniques have to be
used. These interactions lead to the nontrivial conductance
quantization of the quantum Hall effect. One would expect
that the tunneling properties (i.e., tunneling density of states)
of a quantum Hall system would be influenced by the strong
interactions as well. In fact, experiments [1] show that the low-
energy tunneling density of states (DOS) develops a pseudogap
when the lowest Landau level (LLL) is partially filled. Several
theoretical techniques including Chern–Simons theory as well
as standard albeit sophisticated diagrammatic approaches have
reproduced the pseudogap behavior [2–7]. These specialized
approaches are necessary because the strong interactions be-
tween particles make perturbative methods inapplicable. Here
we take a different approach where the physics of the tunneling
event itself plays the primary role.

Many systems exhibit a suppression in the DOS at
the Fermi energy. In previous papers we proposed that
the underlying physics of this suppression is the infrared
catastrophe (IRC) caused by the sudden introduction of a new
localized electron into the host system during tunneling [8–10].
In systems where the accommodation of the new electron is
inhibited by dimensionality, applied perpendicular magnetic
fields, or disorder, one would expect an IRC to occur,

analogous to that of the x-ray edge problem [11]. In a quantum
Hall experiment it is the strong magnetic field that suppresses
the recoil of the tunneling electron. In the limit that the recoil
of the new electron is fully suppressed, the potential it produces
is of the form (assuming the electron is added (tunnels) at time
t = 0 and removed at t0)

φxr(r, t) = U(r)�(t0 − t)�(t) (1)

where U(r) is the electron–electron interaction and � is the
unit step function.

In this work we show that the response of the host
system to a potential of the form (1) can explain the
experimentally observed pseudogap. Previously, we applied
this approach to the LLL using the simplest of interactions, a
delta function [8, 9]. In [8] and [9] we obtained an energy
gap in the DOS instead of a pseudogap. In this paper we
use the actual (screened) Coulomb interaction for U(r) and
recover the observed pseudogap. Our result suggests that
the pseudogap observed in [1] can be understood as another
example of the more general infrared catastrophe phenomena,
which also determines the DOS in one-dimensional electron
systems [8, 9]. In addition, our approach allows one to
determine the relationship between the form of the electron–
electron interaction U(r) and the tunneling DOS in a
straightforward manner, an example of which is given below.

Our work concerns the DOS and associated tunneling
spectrum of a single-layer two-dimensional electron gas in the
quantum Hall regime, both at compressible and incompressible
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filling factors. Experiments on both single-layer and double-
layer systems are possible, the main difference being the
presence of a so-called excitonic shift of the peak of the
DOS downward, caused by the attraction between a tunneling
electron and the hole it leaves behind [1]. Most of the
early theoretical work on this problem also assumed a single
layer [2–5, 7], but Klironomos and Dorsey [6] have generalized
the Wigner crystal model of Johansson and Kinaret [4] to a
double-layer system.

2. General formalism

The general formalism is applicable to a wide variety of
systems and has been discussed in detail in our prior
work [8–10]. For completeness we restate the general outline
here. Note that in our previous work we used the Euclidean
time formalism, but here—to avoid a later difficulty in analytic
continuation—we work in real time.

Starting with a general D-dimensional interacting electron
system, including a possible external magnetic field, the
Hamiltonian is written as

H =
∑

σ

∫
dDr �†

σ (r)
[

�2

2m
+ v0(r) − μ0

]
�σ (r)

+ 1
2

∑

σσ ′

∫
dDr dDr ′ �†

σ (r)�†
σ ′(r′)U(r − r′)

× �σ ′(r′)�σ (r), (2)

where Π ≡ p + e
c A, and where v0(r) is any single-particle

potential energy, which may include a periodic lattice potential
or disorder or both. Apart from an additive constant we can
write H as H0 + V , where

H0 =
∑

σ

∫
dDr �†

σ (r)
[

�2

2m
+ v(r) − μ

]
�σ (r) (3)

and

V = 1
2

∫
dDr dDr ′ δn(r)U(r − r′)δn(r′). (4)

H0 is the Hamiltonian in the Hartree approximation. The
single-particle potential v(r) includes the Hartree interaction
with self-consistent density n0(r),

v(r) = v0(r) +
∫

dDr U(r − r′)n0(r′), (5)

where
n0(r) =

〈 ∑

σ

�†
σ (r)�σ (r)

〉

0
, (6)

and the chemical potential in H0 has been shifted by −U(0)/2.
Here 〈O〉0 = Tr(e−βH0 O)/Tr(e−βH0) denotes an expectation
value with respect to the Hartree-level Hamiltonian. In
a translationally invariant system the equilibrium density
is unaffected by interactions, but in a disordered or
inhomogeneous system it will be necessary to distinguish
between the approximate Hartree and the exact equilibrium
density distributions. The interaction in (3) is written in terms
of the density fluctuation

δn(r) ≡
[
∑

σ

�†
σ (r)�σ (r)

]
− n0(r) = n(r) − n0(r). (7)

We want to calculate the zero-temperature time-ordered
propagator

G(rfσf, riσi, t0) ≡ −i
〈
T �H (rfσf, t0)�

†
H (riσi, 0)

〉
H

(8)

for the interacting system, which can be written (in the
interaction representation with respect to H0) as

G(rfσf, riσi, t0)

= −i

〈
T �(rfσf, t0)�†(riσi, 0)e−i

∫ ∞
−∞ dt V (t)

〉
0〈

T e−i
∫ ∞
−∞ dt V (t)

〉
0

. (9)

Performing a Hubbard–Stratonovich transformation of the
form

e− i
2

∫
δnUδn =

∫
Dφ e

i
2

∫
φU−1φe−i

∫
φδn

∫
Dφ e

i
2

∫
φU−1φ

(10)

leads to

G(rfσf, riσi, t0) = N
∫

Dφ e
i
2

∫
φU−1φg(rfσf, riσi, t0|φ)

∫
Dφ e

i
2

∫
φU−1φ

,

(11)
where

g(rfσf, riσi, t0|φ)

= −i
〈
T �(rfσf, t0)�

†(riσi, 0)e−i
∫

dt
∫

dDr φ(r,t)δn(r,t)〉
0

(12)

is a noninteracting correlation function, and N ≡
〈T e−i

∫ ∞
−∞ dtV (t)〉−1

0 is a constant (independent of t0). So far no
approximations have been made. To make any progress one has
to determine what the important field configurations in (11) are
and how to treat them.

In systems where the recoil of the newly added electron
is suppressed by applied fields, disorder, dimensionality, or
any combination thereof, we propose that the important field
configurations are those close to φxr. These fields correspond
to potentials of recoilless electrons being added to the system.

If we neglect all fields except φxr in (11), the so-called
x-ray edge limit, the fully interacting Green’s function (8) is
given by

G(rfσf, riσi, t0) ≈ N g(rfσf, riσi, t0|φxr). (13)

Next we define the Green’s function

Gxr(rσ t, r′σ ′t ′)

≡ −i

〈
T�(r′σ, t)�†(r′σ ′, t ′)e−i

∫
dt dDr φxr(r,t)n(r,t)

〉
0

Zxr
(14)

where Zxr = 〈T e−i
∫

dtdDrφxr(r,t)n(r,t)〉0. The correlation
function in (13) can be written in terms of Gxr and Zxr as

g(rfσf, riσi, t0|φxr)

= Zxr Gxr(rfσft0, riσi0) ei
∫

dt dDr φxr(r,t)n0(r). (15)

Thus the full Green’s function in the x-ray edge limit is

G(rfσf, riσi, t0)

= N Zxr Gxr(rfσft0, riσi0) ei
∫

dt dDr φxr(r,t)n0(r). (16)

As discussed above, the field φxr(r, t) defined in (1)
describes the potential that would be produced by an electron
added to the system at r = 0 and then subsequently removed.
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While sitting at the origin the ‘electron’ does not move, as
though it had an infinite mass. Thus the x-ray edge limit
neglects recoil of the tunneling electron, an approximation
which is valid here because of the strong magnetic field, which
confines any added charge to a region of a size of the order of
a magnetic length. We note that although our approach is not
able to correctly account for the effects of strong correlation on
the two-particle properties (such as the compressibility) of the
quantum Hall system, the one-particle spectral properties are in
fact accurately described, as is the case for the 1D interacting
electron gas [8, 9].

3. Application to the LLL

Here we apply the above the formalism to the spin-polarized
LLL. A Dyson equation is solved in section 3.1 for Gxr. Zxr is
then calculated in section 3.2. These two factors give the DOS
in the x-ray edge limit, (16).

3.1. Dyson equation

Gxr satisfies a Dyson equation given by

Gxr(r, r′, t, t ′) = G0(r, r′, t, t ′)

+
∫

dt ′′ d2r ′′ G0(r, r′′, t − t ′′)φxr(r′′, t ′′)

× Gxr(r′′, r′, t ′′, t ′). (17)

Choosing B = −Bez and the symmetric gauge A = By/2ex −
Bx/2ey, the noninteracting Green’s function projected into the
LLL is

G0(r, r′, t) = i
∞∑

m=0

φm(r)φ∗
m(r′)[ν − �(t)] (18)

where the

φm(r) = rm

√
2π2mm!e−r2/4eimθ (19)

are the noninteracting single-particle eigenfunctions of the
LLL and 0 < ν < 1 is the filling factor. We work in units
where h̄ = � = 1. Here � = √

h̄c/eB is the magnetic length.
Furthermore, we assume a screened Yukawa potential of the
form

U(r) = e2

r
e−r/α, (20)

with α a screening length determined by the distance to the
nearest gate. The potential (20) is diagonal in the basis (19)
with matrix elements

∫
d2r φ∗

m(r) U(r) φm′(r) = λm δm,m′ , (21)

where

λm(α) ≡ e2

m!
[

1√
2
�

(
m + 1

2

)
�

(
m + 1

2 ,
1
2 ; 1

2α2

)

− m

α
�

(
m

)
�

(
m + 1, 3

2 ; 1
2α2

)]
. (22)

Here � is the gamma function and � is the confluent
hypergeometric function. To solve (17) we use the ansatz

Gxr(r, r′, t, t ′) =
∑

m

am(t, t ′)φm(r)φ∗
m(r′). (23)

Substituting (23) into (17) gives
∑

m

am(t, t ′)φm(r)φ∗
m(r′) = i

∑

m

φm(r)φ∗
m(r′)[ν − �(t − t ′)]

+ ie2
∑

m,l

φm(r)φ∗
l (r′)

∫ t0

0
dt ′′[ν − �(t − t ′′)]am(t ′′, t ′)

×
∫

d2r ′′ φ∗
m(r′′)U(r′′)φl(r′′). (24)

Thus we need to solve the integral equation

am(t, t ′) = i[ν − �(t − t ′)] + iλm

∫ t0

0
dt ′′[ν − �(t − t ′′)]

× am(t ′′, t ′). (25)

Equation (25) is similar to an integral equation we have solved
previously [9]. The solution is

am(t, t ′) = i
(ν − 1)�(t − t ′) + ν�(t ′ − t)e−iλm t0

1 − ν + νe−iλm t0
e−iλm (t−t ′).

(26)
Using the solution of (17) we can calculate Zxr.

3.2. Evaluation of Zxr

From the appendix below,

Zxr = eM (27)

where

M = −
∫ t0

0
dt

∫ 1

0
dξ

∫
dDr U(r)Gξ

xr(r, r, t, t+) (28)

and

Gξ
xr(r, r, t, t+) = i

∑

m

νe−iξλm t0

1 − ν + νe−iξλm t0
|φm(r)|2. (29)

Performing the time and space integrals gives

M = −it0
∞∑

m=0

λm

∫ 1

0
dξ

νe−iξλm t0

1 − ν + νe−iξλm t0
, (30)

and finally

M =
∞∑

m=0

ln
[
1 − ν + νe−iλm t0

]
. (31)

We note that this summation diverges in the α → ∞
(unscreened) limit. Thus,

Zxr = exp

( ∞∑

m=0

ln
[
1 − ν + νe−iλm t0

])

=
∞∏

m=0

[
1 − ν + νe−iλm t0

]
. (32)
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Figure 1. Example fit to the second form of equation (37) with
α = 10 � and ν = 0.48 [1].

(This figure is in colour only in the electronic version)

4. Results

The DOS is given by

N(ω) = − 1

π
sign(ω) Im G(ω) (33)

where G(ω) is the Fourier transform of G(t)

G(ω) =
∫ ∞

−∞
dt G(t) eiωt . (34)

In the x-ray edge limit G(t) is

G(t0) = N Zxr(t0) Gxr(t0) ei
∫

dt dDr φxr(r,t)n0(r) (35)

or

G(t0) =
[

− N i

2π
(1 − ν)�(t0)e

−iλ0t0 eiνe2αt0

+ N i

2π
ν�(−t0)e

−i2λ0t0 eiνe2αt0
]

×
∞∏

m=1

[
1 − ν + νe−iλm t0

]
. (36)

The product in (36) is difficult to handle analytically so we
will use a numerical fit. The product is well approximated by
a modulated Gaussian with three fit parameters {c1, c2, c3},

f (t) =
∞∏

m=1

[
1 − ν + νe−iλm t0

] ≈ c1eic2t e−c3t2
. (37)

An example of the fit is shown in figure 1.
Using the function of (37) the Fourier transform of (36)

can be done analytically, such that

G(ω > 0) = −iN c1

2π
(1 − ν)e

− (ω−ω0 )2

c3(e2/�)2 , (38)

which is just a Gaussian centered at ω0 with energy width√
c3 e2/�. This leads to a DOS (for ω > 0) given by3

N(ω) = N c1

2π2
(1 − ν)e

− (ω−ω0 )2

c3(e2/�)2 . (39)

3 The negative time contribution from (36) simply gives another Gaussian
line-shape for ω < 0.

Table 1. Results of best fit to function (37). α is the screening length
and � is the magnetic length.

α/� c1 c2 c3

5 1.0 1.3 0.08
10 1.0 2.0 0.13
15 1.0 2.7 0.16
20 1.0 2.9 0.19

The width of the Gaussian is of the order seen
experimentally [1], but the energy shift ω0—or more
specifically the fit parameter c2—cannot be accurately
determined. This is because short-time physics enters Zxr

through Gxr(t, t+) and we have solved (17) using a long-time
approximation by including only the LLL in G0. This is a
well known problem dating from the original solution of the
x-ray edge problem [11], where the threshold energy cannot be
obtained accurately but the exact x-ray edge exponent is found.

The fit parameters for two values of screening length α

(see (20)) are summarized in table 1. In a single-layer system,
α is given by the distance to the nearest metallic gate, whereas
in a double-layer system it can be assumed to be the distance
between the layers. We note that the case α = 5 � corresponds
approximately to the experiment of [1], and that in the α → 0
limit the peak width vanishes, in agreement with [10].

5. Summary

In this paper we calculate the DOS for tunneling into the LLL
using the (screened) Coulomb interaction. The calculation
is done within the x-ray edge limit, which amounts to the
neglect of recoil of the tunneling electron. Even in this
approximation we are able to reproduce the experimentally
observed pseudogap. Although the position of the conductance
peak cannot be accurately determined from the present
calculation, the inclusion of higher Landau levels would
remedy this.
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Appendix. Construction of Zxr

Using the linked cluster theorem,

Zxr = 〈
T e−i

∫
dt dDr φxr(r,t)n̂(r,t)〉

0
= eM , (A.1)

where

M =
∞∑

l=1

(−i)l

l

∫
dt1 dDr1 · · ·

∫
dtl dDrl × φxr(r1, t1) · · ·

× φxr(rl , tl)
〈
T n̂(r1, t1) · · · n̂(rl, tl)

〉
different connected

(A.2)
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or

M = −
∞∑

l=1

1

l

∫ t0

0
dt1

∫
dDr1 · · ·

∫ t0

0
dtl

∫
dDrl

× U(r1) · · ·U(rl)G0(r1, rl , t1, tl) · · ·
× G0(rl , r1, tl , t+

1 ). (A.3)

Changing the summation limit leads to

M = −
∞∑

l=0

1

l + 1

∫ t0

0
dt1

∫
dDr1 · · ·

∫ t0

0
dtl+1

∫
dDrl+1

× U(r1) · · ·U(rl+1)G0(r1, rl+1, t1, tl+1) · · ·
× G0(rl+1, r1, tl+1, t+

1 ). (A.4)

Using

Gξ
xr(r, r′, t, t+) = G0(r, r′, t, t+) + ξ

∫ t0

0
dt ′′

×
∫

dDr ′′G0(r, r′′, t, t ′′)U(r′′)Gξ
xr(r

′′, r′, t ′′, t+) (A.5)

and
1

l + 1
=

∫ 1

0
dξ ξ l . (A.6)

Equation (A.4) can be written simply as

M = −
∫ t0

0
dt

∫ 1

0
dξ

∫
dDr U(r)Gξ

xr(r, r, t, t+). (A.7)

Reinstating spin for completeness gives

M = −
∑

σ

∫ t0

0
dt

∫ 1

0
dξ

∫
dDr U(r)Gξ

xr(r, r, t, t+, σ ).

(A.8)

References

[1] Eisenstein J P, Pfeiffer L N and West K W 1992 Coulomb
barrier to tunneling between parallel two-dimensional
electron systems Phys. Rev. Lett. 69 3804

[2] Song H, Platzman P M and Halperin B I 1993 Tunneling into a
two-dimensional electron system in a strong magnetic field
Phys. Rev. Lett. 71 777

[3] Yang S R E and MacDonald A H 1993 Coulomb gaps in a
strong magnetic field Phys. Rev. Lett. 70 4110

[4] Johansson P and Kinaret J M 1994 Tunneling between two
two-dimensional electron systems in a strong magnetic field
Phys. Rev. B 50 4671

[5] Kim Y B and Wen X G 1994 Instantons and the spectral
function of electrons in the half-filled Landau level
Phys. Rev. B 50 8078

[6] Klironomos F D and Dorsey A T 2005 Tunneling between
two-dimensional electron systems in a high magnetic
field: role of interlayer interactions Phys. Rev. B
71 155331

[7] Haussmann R 1996 Electronic spectral function for a
two-dimensional electron system in the fractional quantum
Hall regime Phys. Rev. B 53 7357

[8] Patton K R and Geller M R 2005 Infrared catastrophe and
tunneling into strongly correlated electron systems:
perturbative x-ray edge limit Phys. Rev. B 72 125108

[9] Patton K R and Geller M R 2006 Infrared castastrophe and
tunneling into strongly correlated electron systems: beyond
the x-ray edge limit Phys. Rev. B 73 125416

[10] Patton K R and Geller M R 2006 Infrared catastrophe and
tunneling into strongly correlated electronsystems: exact
x-ray edge limit for the one-dimensional electron gas and
two-dimensional Hall fluid Phys. Rev. B 73 245306

[11] Nozières P and De Dominicis C T 1969 Singularities in the
x-ray absorption and emission of metals. iii. One-body
theory exact solution Phys. Rev. 178 1097

5

http://dx.doi.org/10.1103/PhysRevLett.69.3804
http://dx.doi.org/10.1103/PhysRevLett.71.777
http://dx.doi.org/10.1103/PhysRevLett.70.4110
http://dx.doi.org/10.1103/PhysRevB.50.4671
http://dx.doi.org/10.1103/PhysRevB.50.8078
http://dx.doi.org/10.1103/PhysRevB.71.155331
http://dx.doi.org/10.1103/PhysRevB.53.7357
http://dx.doi.org/10.1103/PhysRevB.72.125108
http://dx.doi.org/10.1103/PhysRevB.73.125416
http://dx.doi.org/10.1103/PhysRevB.73.245306
http://dx.doi.org/10.1103/PhysRev.178.1097

	1. Introduction
	2. General formalism
	3. Application to the LLL
	3.1. Dyson equation
	3.2. Evaluation of Z_{xr}

	4. Results
	5. Summary
	Acknowledgments
	Appendix. Construction of Z_{xr}
	References

